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Summary

1. Complex systems of moving and interacting objects are ubiquitous in the natural and social sciences. Predict-

ing their behaviour often requires models that mimic these systems with sufficient accuracy, while accounting

for their inherent stochasticity. Although tools exist to determine which of a set of candidate models is best

relative to the others, there is currently no generic goodness-of-fit framework for testing how close the best

model is to the real complex stochastic system.

2. We propose such a framework, using a novel application of the Earth mover’s distance, also known as the

Wasserstein metric. It is applicable to any stochastic process where the probability of themodel’s state at time

t is a function of the state at previous times. It generalizes the concept of a residual, often used to analyse 1D

summary statistics, to situations where the complexity of the underlying model’s probability distribution

makes standard residual analysis too imprecise for practical use.

3. We give a scheme for testing the hypothesis that a model is an accurate description of a data set. We demon-

strate the tractability and usefulness of our approach by application to animal movement models in complex,

heterogeneous environments. We detail methods for visualizing results and extracting a variety of informa-

tion on a givenmodel’s quality, such as whether there is any inherent bias in themodel, or in which situations,

it is most accurate. We demonstrate our techniques by application to data on multispecies flocks of insecti-

vore birds in theAmazon rain forest.

4. This work provides a usable toolkit to assess the quality of generic movement models of complex systems, in

an absolute rather than a relative sense.

Key-words: spatial or time-series, statistics, modelling, population ecology

Introduction

How good is a model at describing reality? This fundamental

question, ubiquitous across the quantitative sciences, has trou-

bled and intrigued scientists for over 200 years (Legendre

1805; Gauss 1809). A variety of techniques have been discov-

ered to address the problem in certain situations. Residual

analysis is one example that has a long history of useful appli-

cation in various areas (Zuur et al. 2009; Gordon 2010). How-

ever, it is only usable when the underlying model, or a

summary statistic arising from the model, can be framed as a

simple deterministic function.

Despite this, our world is infusedwith complex, multidimen-

sional, stochastic systems. These range from biological sys-

tems, such as ant colonies, bird flocks and slime mould

aggregation (Camazine et al. 2003), to crowd movement psy-

chology in social sciences (Helbing, Johansson & Al-Abideen

2007), to protein dynamics (Berendsen & Hayward 2000).

Such systems are typically high dimensional and can rarely be

described in an accurate way without taking into account

underlying randomness in movements of constituent objects.

The aim of this paper was to generalize the technique of resid-

ual analysis so that it can be used for generic stochastic systems

ofmoving and interacting objects.

The type of models that are analysable by residual analysis

can be characterized as deterministicmodels. These are models

of the form a = f(b), where a is the prediction, b is a vector of

independent input variables and f is a deterministic function.

The residual, aobs�f(b), where aobs is an observation, measures

the closeness of the model to the data. Residual analysis is well

developed and often used for assessing the quality of models

arising from techniques such as regression (Zuur et al. 2009;

Gordon 2010). However, when the function f is replaced by a

probability distribution, P(b), residuals are no longer well

defined. If the distribution is sufficiently close to a Gaussian,

such as if P(b) = f(b)+ξ where ξ is a zero-mean noise term and

f is deterministic, one can simply define the residual to be the

distance between the data point aobs and the mean of P(b).*Correspondence author. E-mail: j.potts@sheffield.ac.uk

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society

Methods in Ecology and Evolution 2014, 5, 1012–1022 doi: 10.1111/2041-210X.12253



However, this fails to be reasonable if the distribution is more

complex, for examplemultimodal or long-tailed.

Typical stochastic movement-and-interaction models often

depend on heterogeneous properties of either the environment

(Forester, Im &Rathouz 2009; VanMoorter et al. 2009; Potts

et al. 2014a) or surrounding agents (Camazine et al. 2003), fre-

quently making the probability distribution of state transitions

complex and multipeaked. While methods exist for selecting

the relative quality between competing models of these com-

plex systems, such as Likelihood Ratio (Potts et al. 2014a),

Akaike Information Criteria (AIC), Deviance Information

Criteria (Morales et al. 2004) or Bayesian methods (Jonsen,

Flemming & Myers 2005), the current suite of goodness-of-fit

tests fails to provide sufficient techniques for assessing the abso-

lute quality of such a model, that is its closeness to the data.

This has led to researchers either ignoring the question and

solely performing model selection (Moorcroft, Lewis & Crab-

tree 2006), or performing ad hoc tests on 1D summary statistics

(Grimm et al. 2005; Gautestad, Loe & Mysterud 2013). For

example, a search for the 20 highest cited papers that fit animal

movement models to data reveals that none test the absolute fit

of the best model to the data (methods inAppendix S3).

In the animalmovement literature in particular, this tendency

to ignore the absolute quality of a model has been partially

responsible for various controversies regarding the detection of

underlying movement processes (Auger-M�eth�e et al. 2011).

This has led to criticism of many papers for appearing to draw

strong conclusions about animal behaviour by selecting the best

of a small number of simple models, all of which may be very

poor at reflecting data. For example, the results of Viswanathan

et al. (1996) were later overturned by Edwards et al. (2007),

and de Jager et al. (2011) were criticized by Jansen,Mashanova

& Petrovskii (2012) for drawing possibly incorrect conclusions

by only examining very simplisticmodels.

Recent work (Auger-M�eth�e et al. 2011, 2014) demonstrates

that these issues may sometimes be resolved by examining the

residuals of the respective models’ step length and turning

angle distributions. However, this technique is only applicable

to a specific set of models, which have relatively simple distri-

butions, and cannot easily incorporate the effects of heteroge-

neous surroundings on movements. Increasingly, it is proving

necessary to factor such effects into movement models. Recent

developments in both the step selection literature ( Fortin et al.

2005; Rhodes et al. 2005; Forester, Im & Rathouz 2009; La-

tombe, Fortin & Parrott 2013; Vanaka et al. 2013; Potts et al.

2014a) and collective behavioural studies (Deneubourg et al.

1989; Couzin et al. 2002; Hoare et al. 2004; Guttal & Couzin

2010) amply demonstrate the importance of incorporating

often heterogeneous surroundings into the understanding and

modelling of animal movement. It is therefore necessary to

construct tools similar to residual analysis, yet applicable to

these more complex models, to avoid repeating the sort of

problems that have already plagued the field of movement

ecology regarding simpler models, often caused by choosing

between a limited set of possibly poor models (Plank & Cod-

ling 2009; de Jager et al. 2011; Gautestad, Loe & Mysterud

2013; Auger-M�eth�e et al. 2014).

With these issues in mind, we construct a generalized resid-

ual method that can be applied to any stochastic system of

moving and interacting objects. The particular types of models

that we are concernedwith are one-stepMarkovian, describing

the probability Ps(Xt+s|Xt) of a system being in state Xt+s at

time t+s having been in stateXt at time t, as this eases notation

and explanation.However, generalizing to non-Markovian sit-

uations merely involves rewriting the probability function so

that it is dependent on several previous steps rather than just

one. The states Xt+s and Xt could consist of a variety of infor-

mation about the system, for example the positions of the

agents, their directions, environmental information perceived

by the agents and so forth; whatever is appropriate for the sci-

entific questions being addressed.

Large classes of complex systems models in the movement

literature can be described in this way, as so-called coupled step

selection functions (Potts, Mokross & Lewis 2014b). These

includemodels of collective behaviour, which are often applied

to both human systems and inter- and intracellular systems

(Berendsen & Hayward 2000; Camazine et al. 2003; Helbing

et al. 2005). Therefore, our technique fills a gap in the increas-

ingly important field of complex systems science, important for

ecological applications and beyond.

EARTH MOVER’S DISTANCE: A MEASURE OF ABSOLUTE

FIT

Suppose that a complex system is described in ’reality’ by a

function PR(Xt+s|Xt) but that the best model of the system is

given by PM(Xt+s|Xt). In other words, if the system is currently

in stateXt, then the probability distribution function of it being

at state Xt+s after a time of s has elapsed is PR(Xt+s|Xt). How-

ever, the best model constructed so far predicts that the system

will have probability distribution function PM(Xt+s|Xt). To

assess howwell this model reflects reality requires a measure of

the distance between the two probability functions PR andPM.

(Note thatPR andPM depend upon the time interval s between
successive states of the system, but s remains fixed throughout

the paper so we do not include it in the notation.)

Mathematicians have developed such a distance function,

called theWasserstein metric (Vasershtein 1969), a special case

of which has recently reemerged in the visual biometrics litera-

ture as the earth mover’s distance (Rubner, Tomasi & Guibas

2000). Although the general measure-theoretic definition is

rather formal and technical (Appendix S2), the distance has an

intuitive explanation. Imagine that one of the probability dis-

tributions describes a pile of earth (e.g. sand, soil, etc.) that you

have in front of you, and the other describes the shape of a pile

of earth that you want to construct. Intuitively, the earth

mover’s distance is the minimum average distance that each

particle of earth has to move to change the pile from what you

have to what youwant (Fig. 1a).

Although simple to state, this distance can be computation-

ally complex due to an inherent minimization procedure (Pele

&Werman 2009). However, in practice, we are often interested

in how close a movement model is to a data set, rather than a

probability distribution that reflects reality. It turns out that
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the earth mover’s distance between a model and a data set is

considerably easier to compute than that between two proba-

bility distributions, as it obviates the need for minimization

(see Appendix S2).

Suppose we have data on a complex system saying that it is

in states S0, S1,. . ., SN at times 0, s, 2s, . . ., Ns respectively.

Then the probability density function describing the transition

between data point n�1 and n is just a Dirac delta function

PR(X|Sn�1) = d(X�Sn). In other words, the probability of the

system transitioning to any state other than Sn is zero, and the

integral of the probability density function is equal to 1.

Suppose also that the best model we have so far constructed

for these data is PM(Xt+s|Xt). Then the earth mover’s distance

(EMD) between this model and a data point Sn, given a previ-

ous data pointSn�1, is

EMDðPM;SnÞ ¼
Z
X
dðX;SnÞPMðXjSn�1ÞdX; eqn 1

where d is a distance metric between the states of the system

andΩ is the space of all system states. For example, d could be

the Euclidean distance DE between two points in space and Ω
could be a subset of a 2-dimensional plane, if modelling a single

terrestrial animal’s movement. As another example, for a col-

lective system with K animals, d could represent the mean

Euclidean distance between pairs of points for each animal,

dðx1; . . .; xKjy1; . . .; yKÞ ¼ 1
K

PK
k¼ 1 DEðxk; ykÞ, where xk, yk

are points in Ω. If the model is in discrete space, so that Ω is a

finite set of points, one simply replaces the integral in eqn 1

with a sum and divide by the number of points in Ω. An illus-

tration of eqn 1, in the simplest case of one agent moving in

one dimension, is given in Fig. 1b. Notice that the Kullback–

Liebler distance [see e.g. Burnham & Anderson (2002)] only

gives information based on the value of f(xo), whereas EMD

takes into account the shape of the entire distribution f(x).

The definition in eqn 1 implicitly assumes that the noise in

the data is negligible. This is often reasonable for movement

models constructed from GPS data of animals, as the error in

GPS trackers is very highly correlated (Severns & Breed 2014).

However, if it is necessary to take into account of noise, this

can be done by replacing 1 with the general definition of

EMD, given in Appendix S2 equation (1) with p = 1.

Although analytically simple, the EMD in this case is much

more intensive to compute than eqn 1. See Appendix S2 for

more details.

Notice that if the model were deterministic then the state X

of the model at time t+s given that it was at state Xt at time t is

Xt+s = f(Xt) for some function f. Writing this in the notation of

probability distributions, we have PM(Xt+s|Xt) = d[f(Xt)] so

that the earth mover’s distance for each data point Sn is pre-

cisely the absolute residual |Sn�f(Sn�1)| of the model Xt+s =
f(Xt). In other words, eqn 1 generalizes the concept of a resid-

ual, rationalizing the choice of this particular metric over the

others available (Gibbs & Su 2002).

The EMDbetween amodel and the whole data set S0,S1,. . .,

SN is themean of eqn 1 over all the data points

EMDðPM;S0; . . .;SNÞ ¼ 1

N

XN
n¼ 1

EMDðPM;SnÞ: eqn 2

One drawback of the EMD is that it gives more weight to

distributions with higher variance. Also, it is a dimensional

quantity, with units of space. To mitigate against these issues,

we use the dimensionless standardized EMD (SEMD), ES(P
M;

S0,. . .,SN), which is defined by dividing the EMD by the stan-

dard deviation sn of themodel. For a single data point, this is

EMDSðPM;SnÞ ¼ EMDðPM;SnÞ
sn

; eqn 3
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Fig. 1. The EarthMover’s Distance (EMD). Panel (a) shows two probability distributions. Imagine that the black one is a pile of earth andwe want

to construct from this the red distribution in the most efficient way possible. The EMD gives the average distance that we would need to move each

particle of earthwhen performing this transformation. Panel (b) shows the situation relevant to the present study, where we have amodel probability

distribution of possible states that a complex system might be in at time s in the future (black curve), together with an observation of the state at

which the system actually ended up in, denoted by point x = xo. This observation translates to a Dirac delta probability density function d(x�xo),

assuming that the observation has negligible error. The EMD in this instance is the average distance each part of the probability density function has

tomove to end up at xo. For example, at point x = a, we need tomove f(a) = 5�5 amount of probability distribution a distance of |a�xo|. By integrat-

ing the product |a�xo| f(a) over all such a, we obtain the EMD between the model and data, for a single data point (1). The dotted line denotes the

mean of the black distribution. Although we illustrate this in 1 dimension for ease of explanation, typically complex movement models may have

states inmuch higher dimensions. Panel (c) shows the EMDas a function of the observation xo.
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and sn is the standard deviation of the model for moving from

position Sn�1. In other words,

s2n ¼
Z
X
X2PMðXjSn�1ÞdX�

Z
X
XPMðXjSn�1ÞdX

� �2
" #

:

eqn 4

The SEMD between a model and a sequence of data points

S0, S1, . . .,SN is

EMDSðPM;S0; . . .;SNÞ ¼ 1

N

XN
n1

EMDSðPM;SnÞ: eqn 5

Anymethod described in this paper using EMD can equally

be performed using SEMD, so we explain everything just using

EMD, for simplicity. However, as the Results show, either

SEMDor EMDmay be preferable depending on the situation.

Further information about themodel can be gained by look-

ing at the mean directions from the model to the data, given by

v̂n ¼ vn=jvnjwhere

vn ¼
Z
X
ðSn � XÞPMðXjSn�1ÞdX; eqn 6

so that v̂n is a unit vector in the direction from the data point

Sn to the mean of the distribution PM(X|Sn�1) that predicts

where Sn is likely to be. When the system state is given by posi-

tions on a 2D plane, this information can be visualized by plot-

ting each line from the origin to the position given by

v̂nEMDðPM;SnÞ, giving a wagon wheel of directional EMDs

(Fig. 2a,b). However, for a large data set, this can be some-

what messy. Instead, we bin the directions into eight equal sec-

tions, constructing what we call a dharma wheel (Fig. 2c–f), for

its resemblance to the Buddhist symbol for the noble eightfold

path (Beer 2005). The smaller the dharma wheel, the more

accurate themodel.

Dharma wheels are examples of the classical concept of a

polar area diagram (Friendly 2008). The choice of eight sec-

tions is quite arbitrary, and, depending on the situation, it may

be valuable to use a different number. Alternatively, one could

obtain a smoother wheel by fitting the wagon wheel to a mix-

ture of wrapped normal distributions. However, for simplicity

of explanation, we use eight sections throughout this paper.

Dharma wheels also detect bias in data (Fig. 2e,f), in anal-

ogy with residual analysis for linear models (Zuur et al. 2009).

In addition to binning by direction, insight can be gained by

constructing histograms of EMD against specific properties of

the system (see Results).

An important use of EMD is to investigate goodness-of-fit

statistically, by testing the null hypothesis 'the model could

have given rise to the data’ against the alternative that it fails in

this regard. We assume the modeller has already used some

form of selection technique (e.g. AIC, BIC) to find and para-

metrize the best of the models so far considered. Then the fol-

lowing sequence of steps enables the modeller to find out

whether this best model reflects the data well:

1. suppose there areN data points (henceforth the data) and a

best candidatemodel (henceforth, the model)

2. simulate the model for N steps and repeat M times, where

M is as big as is computationally feasible

3. for each simulation, generate the EMDs between each of

the simulated paths and the model used to simulate them,

to giveM distances EMD1,. . ., EMDM

4. find the EMDbetween the data and themodel, EMDdata

5. we can then test whether EMDdata is likely to be a sample

from the distribution given by EMD1,. . ., EMDM. We use

a 5% significance level, so that if EMDdata is greater than

the 97�5 percentile of EMD1,. . ., EMDM, or less than the

2�5 percentile, thenwe reject the null hypothesis.
Notice that Step 5 is precisely equivalent to testing whether

the Bayesian P-value Prob(EMDi 6¼ EMDdata| the model) is

less than 5% (Agresti &Hitchcock 2005).

Methods

To show the practicality of our approach, we demonstrate

how to use the earth mover’s distance (2) for models of animal

movement in heterogeneous environments.We use a simulated

data set to test the efficacy of our model, based on an animal

moving in an environment with two resource layers in a 1000

by 1000 square lattice (Fig. 3). These can be thought of, for

example, as Geographic Information System (GIS) layers or

resource distributions (Bolstad 2005). The layers are Gaussian

random fields, generated by the R function GaussRF() from

the RandomFields package (Schlather et al. 2013), using the

exponential model. Both layers have mean =0, variance =1
and nugget =0. Layer 1 has scale =10 so varies rapidly through

space. For the sake of intuition, this might be thought of as

denoting the amount of food available throughout the terrain.

For Layer 2, scale =1000, thus varies much more slowly than

layer 1. This layer could represent the topography or another

large geographical constraint to movement, for example.

Disregarding the effect of the layers, animals move as ran-

dom walkers with exponentially distributed step lengths

which have a mean length of 5 lattice points. Then the effect

of the layers on the animal’s movement follows the concept

of a step selection function, so that the probability f(x|y) of

moving to position x from position y in a time interval s is

given by

fðxjyÞ ¼ K exp½ �kjx� yj|fflfflfflfflfflffl{zfflfflfflfflfflffl}
step length distribution

þaw1ðxÞ þ bw2ðxÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
effect of resource layers

; eqn 7

where k = 1/5, wi(x) is a function taking the value of Layer i at

position x, a and b are the model parameters and K is a con-

stant that ensures that the integral of fwith respect to x is 1, so

that f is a probability distribution. This is a simple version of a

step selection function, or movement kernel, often used for

modelling animal movement [e.g. Fortin et al. (2005); For-

ester, Im&Rathouz (2009); Potts,Mokross&Lewis (2014b)].

We generate two different simulated data sets. One is of 100

different animals, starting at random locations in the grid, for

1000 ‘steps’ (by which we mean ‘movements between succes-

sive location fixes’) each. The other is of 10 animals, again with

random starting points, simulated for 500 steps each. This

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 5, 1012–1022
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enables us to demonstrate the relative effectiveness of our

methods as applied to different sizes of data set. The simulated

data have a = 1�5 and b = 10 (eqn 7). We analysed the simu-

lated data {x0, . . ., xN} (which can be thought of as a special

case of the arbitrary data {S0, . . ., SN} above) by finding the

EMD from {x0, . . ., xN} to four different models, fj(x|y),

j = 1,2,3,4. Each model is of the form in eqn 7. Model f1 has

a = 0, b = 0, f2 has a = 1�5, b = 0, f3 has a = 0, b = 10 and for

f4, a = 1�5, b = 10.

To show that dharmawheels can detect bias in a process that

may not be evident in the underlying model, we simulated 100

animals on a 1000 by 1000 square lattice for 1000 time steps

each, performing a random walk with step length distribution

(1/5) exp [�x/5g(h)] where g(h) = (8/5)[(9/5) cos 6(h)+(1/5)

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Wagon wheels and dharma wheels. Panel (a) shows a wagon wheel for a hypothetical data set of 10 points. The length of each line from the

origin is the earth mover’s distance (EMD) for a single data point. The direction of the line is the mean direction from the model to the data point.

This becomes rathermessywhen there aremany data points, as panel (b) shows, where there are 100 000 simulated points. Instead, we bin the spokes

up into eight segments, to construct a dharma wheel (Panels c,d). The dharma wheels in Panels (c,d) were created using a simulated data set of the

model in eqn 7 with a = 1�5 and b = 10. The dharma wheel obtained by calculating the EMD from this data set to two different models of the form

in eqn 7 is shown here. The mean EMDs, denoted 〈EMD〉, are given within the panels, together with the parameter values used. The latter corre-

spond tomodels f1,f4 from themain text for panels (c,d), respectively. Panel (b) was also constructed from f1. Panels (e,f) were constructed using sim-

ulated data from a randomwalk with a tendency tomove faster in the east–west than north–south direction. Panel (e) shows the dharmawheel using

the EMD from this data set to an unbiased randomwalkmodel. Panel (f) shows the EMD to themodel fromwhich the data were simulated.

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 5, 1012–1022
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sin 6(h)] and h is the animal’s bearing. This means the animal

tends to move more in the east–west direction than north–

south. For example, this could be due to a confining valley run-

ning from east to west.We found the EMDbetween these sim-

ulated data and a random walk with a uniform exponential

step length distribution, mean 5 units. We compared it to the

EMD between these data and the model fromwhich they were

generated.

As a demonstration of the hypothesis test explained in the

‘Earth mover’s distance’ section, we use simulated data sets

with a = 1�5 and all integer values of b ranging from 0 to 10.

We imagine that someone has gathered these data but only

knows about, or has data on, Layer 1. Therefore, the best

model that this person can construct has a = 1�5 and b = 0.

We test the hypothesis that this latter model is an accurate

description of the various simulated data sets, using the above

test. This mimics a situation where two layers (Layer 1 and

Layer 2) are affecting animal movement but the data gatherer

has only thought to test one of them (Layer 1). It tests howwell

the technique does at informing the user that there is some-

thingmissing from themodel.

For each pair of parameter values (a,b), we simulate 500

data sets. We test the null hypothesis that 'a model with

a = 1�5 and b = 0 accurately describes the data’ using the

above test on each of the 5500 data sets (500 for each value ofb).
Then, for each value of b, a certain percentage of the tests

accept the null hypothesis, while the rest reject it, so we can plot

this percentage against b to give a power curve. A better test

(a)

(c)

(b)

(d)

Fig. 3. Example scenario of a complex movement model. An animal moves in a heterogeneous environment, with some randomness but also a ten-

dency tomove towards articular regions of space. Panels (a) and (b) are simulatedGeographic Information System (GIS) layers. The higher the value

of the layers at a given point, the more that eachmovement the animal undergoes is biased towards that point. Panel (c) shows the combined biasing

effect of the two layers in a region close to the centre of the simulated study area (using a = 1�5, b = 10 in the notation of theMethods section). Panel

(d) shows the probability distribution of where an animal, starting at the centre, will move to after a time s has elapsed (seeMethods for details).

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 5, 1012–1022
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would have more hypothesis tests rejected for values of b > 0,

whilst having the same or less hypothesis tests rejected for

b = 0. Thus, we can assess the relative power of the test using

EMDand that using SEMD, by examining the respective areas

under the power curves.We use this to test whether the SEMD

improves the power of our hypothesis testing as comparedwith

ordinary EMD. The power is also likely to be affected by the

size of the data set. To test this, we performed the same power

test but for 100 animals moving 1000 steps each. As this is

highly computationally intensive, we usedM = 100 and simu-

lated only 100 data sets, rather than 500. Simulations are per-

formed in the C programming language and data analysis in

Python. The Python code has also been translated into R, and

the C code can be run from R. The code can be downloaded

from the Data Dryad Repository (doi:10.5061/dryad.9h42f).

We include an instructionmanual inAppendix S1.

To test the applicability of our technique for models on a

real data set, we use a recent model of bird flock movements

and territorial interactions in the Amazon rain forest. The

flocks are multispecies, with the cinereous antshrike (Tham-

nomanes caesius) playing a nuclear role in flock cohesion and

movement (Munn 1986). Details of the data collection meth-

ods, justification for them, the rationale behind the model con-

struction and the model selection techniques are all given in

Potts, Mokross & Lewis (2014b). Although we do not dupli-

cate these specifics here, we give a brief summary of themodel.

The model treats each flock as a single, moving unit. This

reflects the nature of the data which were gathered using the

cinereous antshrike’s position, where possible, to infer the

flock’s central location. The antshrike was usually conspicuous

in the centre of the flock. Data were gathered at 30 s intervals.

The flocks tend to move from tree to tree approximately once

every 1–2 min. Model selection techniques reveal that a 1-min

timescale is the best timescale to model these flocks’ movement

(Potts et al. 2014d) so the model we use has s = 1 min. An

exponentially decaying distribution of movement lengths

between successive 1-min location fixes is used to model the

bird’s movement. The model also includes the intrinsic persis-

tence in the birds’ movement. In addition to this, the birds are

modelled as having a preference for higher tree canopies and

lower ground. Finally, the birds know where other flocks have

been in the recent past, due to vocalizations, so they are mod-

elled as moving away from areas that have been visited by

other flocks.

We use the EMD testing procedure, given at the end of the

previous section, with M = 1000, to test the hypothesis that

the model detailed in Potts, Mokross & Lewis (2014b) could

have given rise to the data observed in the same study. We

examine the resulting dharmawheel as well as the histogram of

EMD against canopy height, topography, change in canopy

height over a step and change in topography over a step.

Results

The example process we use is of a hypothetical animal in a

heterogeneous environment consisting of two layers that affect

movement (Fig. 3). As expected, the dharma wheel for the

EMD between simulated data and a model that accurately

reflects the simulations (Fig. 2c) has a smaller area than one

with certain parameters suppressed (Figs 2d and S2). Visually,

this is not so apparent with SEMD, suggesting that there is

value in using EMD for such qualitative tests.

Figure 2e,f shows what happens when there is a bias in the

movement process. If the model fails to take this into account,

then the resulting dharma wheel is skewed in the direction of

the bias, in this case parallel to the x-axis. A model that does

take this bias into account results in a more symmetric dharma

wheel (Fig. 2f), albeit with some randomvariation.

By constructing histograms of EMD against the value of the

layer where each step ends, Fig. 4 shows that model f4 is better

at predicting the observations when animals are in environ-

ments where the value of layer 1 is relatively high (seeMethods

for descriptions of models fi). However, if it is low, then model

f3 performs marginally better. This is important if we wish to

(a) (b)

Fig. 4. EMDbinned by value of layer 1. Using 100 000 simulated data points from themodel 7 with a = 1�5 and b = 10, the EMDs from these data

to themodel with (a) a = 1�5 and b = 10, and (b) a = 0 and b = 10. EMDs for each step are binned according to the value of Layer 1 (Fig. 3a) at the

point where the step ends. Unless this value is very low, the model with a = 1�5 is better, otherwise a model excluding the effect of Layer 1 is better.

This shows howEMDcan be used to ascertain which environments amodel may prove to be good at predictingmovements, and where it is likely to

fail.
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use a model parametrized in one study area to predict move-

ment in another. In the example here, if we imagine layer 1

denotes food availability, then Fig. 4 tells us that our overall

best model, f4, will be good at predicting movement in a food-

rich environment but may be quite bad if we try to use it in a

food-poor area.

Performing a power analysis of the hypothesis test detailed

in the previous section by varying b in the simulations (see

Methods), SEMD performed far better than ordinary EMD

(Fig. 5a,b). Ordinary EMD turned out to be quite poor when

used for testing the hypothesis that a model accurately reflects

the data, almost always failing to reject the null hypothesis

when it should, thus being highly susceptible to type II errors

(Casella & Berger 2002). Replacing SEMDwith log-likelihood

in the hypothesis test also yielded worse results. Therefore, we

would recommend using SEMD for testing this type of

hypothesis.

The power of the test depends upon both the actual underly-

ing processes and the size of the data set. Figure 5 demonstrates

that using 100 000 data points (Panels b and d) rather than

(a) (b)

(d)(c)

Fig. 5. Power of the EMDhypothesis test. Panel (a) shows the proportion of simulated data sets for which the hypothesis that a model with a = 1�5
and b = 0 accurately describes the data were rejected, for each value of b used. Using SEMDproves to be far preferable to both ordinary EMD and

likelihood. In all situations, approximately 5% of data sets with b = 0 result in type I errors, as expected due to the use of 95% confidence intervals.

As b is increased, the number of type II errors decreases, to the point where zero out of 500 data sets exhibited type II errors occurred when using

SEMD, if b≥8. Panel (b) shows a similar plot, but using 100 000 data points for each simulated set, rather than the 5000 used in panel (a), showing

that the larger the data set, the stronger the power of the test. Panels (c) and (d) represent the hypothesis test visually. The black curves show dharma

wheels of simulated data with a = 1�5 and b = 10 tested against a model with a = 1�5 and b = 0. The red curves show dharmawheels of the mean of

1000 simulated data sets with a = 1�5 and b = 0 tested against a model with a = 1�5 and b = 0 (red curves). The blue lines show 95% confidence

intervals. Each simulated data set for constructing Panel (c) had 5000 points, while Panel (d) used 100 000 points for each data set.
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merely 5000 (Panel a and c) gives much smaller error bars on

the EMD (Panels c and d) and rejects false null hypotheses

more frequently (Panels a and b).

Using the EMD procedure to test the quality of the model

of Amazonian bird flock movement from Potts, Mokross &

Lewis (2014b) against the data described there revealed that

the model is insufficient to describe the data in full accuracy.

This rejection occured at both the 5% and 1% significance lev-

els. Using notation from the end of the section 'Earth mover’s

distance: a measure of absolute fit’, EMDdata = 1�737, whereas
the 0�5 and 99�5 percentiles of EMD1,. . .,EMDM are 1�690 and
1�691 respectively. Using SEMD, the corresponding values are

EMDdata = 1�153 and 0�5 and 99�5 percentiles are 1�129 and

1�134 respectively.
The resulting dharma wheel is very round (Fig. S3), suggest-

ing that the model is unlikely to be missing a directional bias.

Histogramming the EMDs by canopy height and topography

also reveals no clear trend (Fig. S4a,b).When we use the differ-

ence in canopy height from the start to the end of the step,

there is also no clear trend in EMD (Fig. S4c). However, when

we histogram by difference in topography, the EMD is lower

for steps where the difference in topography is lower (Fig.

S4d). This suggests that there may be some additional trigger

that causes the particular decisions to move to higher or lower

ground. These observations are unchanged when we use stan-

dardized EMD (Fig. S5)

Discussion

We have constructed a generalized version of a residual that is

usable with complex stochastic movement models. We have

given a method for using this to test the validity of a model in

an absolute rather than relative sense, as well as showing how

this concept can give visual insight into the strengths and short-

comings of a stochastic model. By testing our techniques on

simulated data, where we have control over the mechanisms

underlying movement decisions, we have demonstrated that

our techniques are tractable and can give useful insight into

realistic situations.

While many techniques exist for comparing models within a

limited class, for exampleAIC andBIC (Burnham&Anderson

2002), our techniques can be used for showing whether there is

an important model parameter missing from outside that class.

This would helpmitigate against scientistsmaking bold conclu-

sions after having only fitted data to a small number of poor

models, only later to have those conclusions refuted when a

more realistic one is used (Edwards et al. 2007; Jansen,Masha-

nova&Petrovskii 2012; Auger-M�eth�e et al. 2014).

Incorporating the correct level of complexity is also of great

importance if we want to construct models that are truly pre-

dictive, as such models must include all necessary mechanisms

to make the predictions accurate (Evans et al. 2013). To this

end, we believe that combining our EMD techniques with

cross-validation may prove to be useful (Seymour 1993). One

might use model selection on one subset Σ of a data set, then

analyse the rest of the data, Σc, by finding the EMD between

Σc and the best model. If this EMD is very different from the

EMD between the best model and Σ, then this suggests that

themodel has weak predictive power. Turning this into a rigor-

ous statistical test would be a useful extension of our

approach.

Themain aim of our hypothesis test procedure is to evaluate

goodness-of-fit by rejecting models that do not capture the

data well. Although this worked reasonably well in the scenar-

ios we examined, if the data set is too small or the effect of a

certain covariate too mild, then the procedure can be prone to

Type II errors, that is failing to reject an incorrect null hypothe-

sis (Fig. 5a). The chance of making Type I errors, that is reject-

ing a correct null hypothesis, is simply the same as the

confidence interval used in the testing procedure (Casella &

Berger 2002). As we used 95% in our study, this will happen

5% of the time, as confirmed by simulations (Fig. 5a). How-

ever, there is no reason in principle why a user of our methods

could not use a different confidence interval, or search for the

exact P-value of the test for their data set, which may be very

small if the data set is large.

As well as being a natural generalization of a residual, a

strength of our method is that it takes into account multi-

modal probability distributions, giving a low EMD to data

points that are on any one of many peaks. Methods such as

posterior predictive checks (PPC) (Gelman et al. 2004) typi-

cally examine the mean of a probability distribution, or sam-

ples thereof. Suppose, for example, we have two peaks with a

low probability area between them. Then PPC would penalize

an observation on one of the peaks more than in the low area

between the two peaks. EMD, on the other hand, would

penalize these observations roughly equally (e.g. Fig. 1b).

Therefore, one could use EMD as an alternative criterion

within a PPC. Generalized forms of 2, discussed in Appendix

S2, can have rich properties that allow the user to decide how

to penalize areas of a distribution where there are multiple

peaks.

Our technique revealed that a recent model of Amazonian

bird movement (Potts, Mokross & Lewis 2014b) is insufficient

to describe the data it models, inasmuch as we were forced to

reject the hypothesis that the data arose purely from processes

described in the model. This is despite the fact that the model

includes five different factors (step length, turning angle,

attraction to high canopies, bias towards lower ground and

repulsion away from other flocks’ territories) that were all

shown in the previous study to have significant impacts on bird

movement. In other words, it is the best model from a variety

of different hypothesized models, but it is not good enough for

accurate description or prediction of movement. Conse-

quently, we might be missing a key process in understanding

themovement of these animals.

This corroborates qualitative findings from the previous

study (Potts, Mokross& Lewis 2014b), which showed pictori-

ally that this model appeared to give slightly inaccurate territo-

rial patterns when simulated. However, quantitative

confirmation of this is far better than relying on pictures, and it

demonstrates that we need to think of further covariates that

may be affecting bird movement if we are to build an accurate,

predictive model. As the dharma wheel for this model is very
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round (Fig. S2), it is likely that these covariates do not include

directional biases, so we should look for other, non-directional

effects. The reader is referred to the previous study for a discus-

sion of hypothesized candidates for these effects, which include

extra confinement due to memory and territorial displays

(Potts,Mokross &Lewis 2014b).

The EMD analysis also revealed that the model does not

capture well any moves that flocks make where there is a big

difference in topography. This suggests that there is some addi-

tional trigger causing birds to move to higher or lower ground

beyond those examined so far. Flocks display movements akin

to patrolling areas on edges of territories on higher ground,

possibly to reinforce cues for demarcation of territorial limits.

In such areas, when not engaged in territorial interactions,

flocks display more ballistic paths compared to the area

restricted behaviour seen inside drainage valleys, indicating

that intensive area restricted foraging may not be a primary

motivator (K. Mokross pers. obs.). Therefore, movements to

much higher ground may indicate a switch from foraging to

territorial defence, whereas movements to much lower ground

may indicate a switch back to foraging.

Although we have focused on animal movement in this

paper, the techniques we propose can, in principle, be used for

analysing any stochastic movement model. For example, these

could include collective motion of humans, cancer growth or

complex systems of intracellular proteins (Berendsen & Hay-

ward 2000; Friedl &Wolf 2003; Helbing, Johansson&Al-Abi-

deen 2007). We imagine that the techniques proposed here are

merely the tip of the iceberg of possible uses for EMD in analy-

sing movement models. We have already suggested some pos-

sible extensions, such as using the generalized form in

Appendix S2, or combining EMD with cross-validation.

Analysis of these situations and others, while beyond the scope

of the present paper, would doubtless provide further impor-

tant techniques for understanding how best to model complex

systems. This paper provides an introduction to the concept of

residuals generalized to stochastic movement models.We hope

that future work, by us and others, will find many more riches

that come from this fundamental idea.
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